3 research outputs found

    Design and fabrication of materials with desired deformation behavior

    Full text link
    Figure 1: Two examples of real and replicated objects. Thanks to our data-driven process, we are able to measure, simulate, and obtain material combinations of non-linear base materials that match a desired deformation behavior. We can then print those objects with multi-material 3D printers using two materials (blue and black) with varying internal microstructure. This paper introduces a data-driven process for designing and fab-ricating materials with desired deformation behavior. Our process starts with measuring deformation properties of base materials. For each base material we acquire a set of example deformations, and we represent the material as a non-linear stress-strain relationship in a finite-element model. We have validated our material measure-ment process by comparing simulations of arbitrary stacks of base materials with measured deformations of fabricated material stacks. After material measurement, our process continues with designing stacked layers of base materials. We introduce an optimization pro-cess that finds the best combination of stacked layers that meets a user’s criteria specified by example deformations. Our algorithm employs a number of strategies to prune poor solutions from the combinatorial search space. We demonstrate the complete process by designing and fabricating objects with complex heterogeneous materials using modern multi-material 3D printers
    corecore